Hamiltonian Boundary Value Methods ( Energy Preserving Discrete Line Integral Methods ) 1 2
نویسندگان
چکیده
Abstract: Recently, a new family of integrators (Hamiltonian Boundary Value Methods) has been introduced, which is able to precisely conserve the energy function of polynomial Hamiltonian systems and to provide a practical conservation of the energy in the non-polynomial case. We settle the definition and the theory of such methods in a more general framework. Our aim is on the one hand to give account of their good behavior when applied to general Hamiltonian systems and, on the other hand, to find out what are the optimal formulae, in relation to the choice of the polynomial basis and of the distribution of the nodes. Such analysis is based upon the notion of extended collocation conditions and the definition of discrete line integral, and is carried out by looking at the limit of such family of methods as the number of the so called silent stages tends to infinity.
منابع مشابه
Recent Advances in Geometric Integration
We provide a self-contained introduction to discrete line integral methods, a class of energy-conserving Runge-Kutta methods recently devised for the numerical solution of Hamiltonian problems [1]. The basic idea on which the methods rely on will be fully discussed, along with a corresponding novel framework for the analysis of the methods [2]. The class of energy-conserving Runge-Kutta methods...
متن کاملLine Integral Methods able to preserve all invariants of conservative problems
Recently, the class of Hamiltonian Boundary Value Methods (HBVMs) [1] has been introduced with the aim of preserving the energy associated with polynomial Hamiltonian systems (and, more in general, with all suitably regular Hamiltonian systems). However, many interesting problems admit other invariants besides the Hamiltonian function. It would be therefore useful to have methods able to preser...
متن کاملLine integral methods which preserve all invariants of conservative problems
Recently, the class of Hamiltonian Boundary Value Methods (HBVMs) has been introduced with the aim of preserving the energy associated with polynomial Hamiltonian systems (and, more in general, with all suitably regular Hamiltonian systems). However, many interesting problems admit other invariants besides the Hamiltonian function. It would be therefore useful to have methods able to preserve a...
متن کاملHigh-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems
We define a class of arbitrary high order symmetric one-step methods that, when applied to Hamiltonian systems, are capable of precisely conserving the Hamiltonian function when this is a polynomial, whatever the initial condition and the stepsize h used. The key idea to devise such methods is the use of the so called discrete line integral, the discrete counterpart of the line integral in cons...
متن کاملEnergy-conserving methods for the nonlinear Schrödinger equation
In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) [14], by means of energyconserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schrödinger equation (NLSE), of interest in many appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009